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More wavelet-like orthonormal bases for the lowest Landau 
level: some considerations 

F Bagarelloi 
Dipartimento di Motematica ed Applicazioni, FacoltrI di Ingegneria, Universita di Palermo, 
1-90128 hlermo, Italy 

Received 1 I February 1994, in final form 29 April 1994 

Absmct h a previous work. J P Antoine and I have discussed a general procedure which 
‘projects’ arbivary orthonormal bases of LZ@) into orthonormal bases of the lowest Landau 
level, In this paper, we apply this procedure to a cerWin number of examples, with paiicular 
attention to he spline bases. We also discuss Ha. Littlewood-Paley and Jot” bases. 

1. Introduction 

In a previous paper [ 11, Antoine and the author have discussed in some detail how wavelet 
theory and multi-resolution analysis (MRA) can be used in the description of two-dimensional 
electron systems, with particular attention to the fractional quantum Hall effect (FQHE). 

The first step in discussing this effect consists of finding a good description of the 
ground state of the finite-volume ( V )  system (with a finite number ( N )  of electrons) and 
then to consider its thermodynamical limit (V and N 4 w). In [2] the authors have shown 
that, for a certain range of electron density, the correlations between the electrons do not 
significantly lower the energy of the system and, in fact, a Slater determinant of single- 
electron wavefunctions (with Gaussian behaviour in x and y )  is a good candidate for the 
ground state of the Hamiltonian. Out of this range, however, the Laughlin wavefunction 
[3] is energetically favoured [2] so that a phase transition is expected for a certain ‘critical’ 
electron density. The experiments follow this same direction [4] but the experimental and 
theoretical values of these ‘critical’ densitiet differ slightly so that an improvement of the 
theoretical results is needed. Moreover, the hierarchical shucture discussed in [5] and in 
other works cannot easily be recovered using the wavefunction proposed in [2] or other 
wavefunctions of the same kind. This hierarchical structure is, on the contrary, naturally 
present in wavelet theory so that it is natural to ask whether this framework could help 
in understanding the intrinsic nature of the FQm. Another reason suggesting the use of 
wavelets is the necessity of minimizing the trial ground-state energy. We know, in fact, that 
a better localization of the single-electron wavefunction is reflected into a lower energy of 
the corresponding Slater determinant 121. Therefore, the existence of a natural parameter 
which controls the support of the constructed functions starting from a given mother wavelet 
might be conveniently used in the description of the PQm. 

With these considerations in mind, it is clear why we prefer to construct new ‘wavelet’ 
bases instead of using already existing bases such as the ones proposed in [2,3,6]. 
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The Hamiltonian of a single electron constrained in a plane and subjected to a strong 
magnetic field orthogonal to the plane is 

Ho = f (Qn t PO) (1.1) 

where Q = p y  + x/2 and P' = p x  - y 12. 

level (LLL) can be conveniently expressed by 
In [ l ]  it is shown that any single-electron basis (@&, y )  : n E Z] for the lowest Landau 

where the set (h,(P)] is the corresponding basis in L2(R) .  Moreover, if (hn,  h,) =a,,, it 
is also easy to prove that the functions of the set (@&, y )  : n E Z) are mutually orthogonal. 

Formula (1.2) has a certain utility for discussing the asymptotic behaviour of the function 
@&, y )  in x :  it is easy to see, in fact, that the asymptotic behaviour of q n ( x ,  y )  for large 
Ix I is governed by the asymptotic behaviour of h,(P). One can also show that the behaviour 
in y, for IyI >> 1, is related to the behaviour of &(e) for I Q 1  >> 1, the Fourier transform of 
h.(P). We will come back to this point in the next section. The possibility of controlling 
the asymptotic behaviour of Q n ( x 3  y )  is crucial since we have in mind to add a Coulomb 
interaction between the electrons. Such an addition causes an increment in the energy of the 
system which is minimized if the single-electron wavefunctions are localized as much as 
possible and their relative orthogonality kept untouched. This is the reason why the Wigner 
crystal, in which the electrons are extremely localized (they are actually described by delta 
functions), gives a lower bound for the energy of the two-dimensional electron gas. As we 
have already mentioned, wavelets seem to be the natural choice for the best control of this 
localization property. We know, in fact, that if h(x )  is an opportune mother wavelet [7] 
then the set [ h m n ( x ) ,  m, n E Z] [2-"'/%(2-'"x - n), m, n E Z} is formed by mutually 
orthonormal functions whose support is controlled by the value of the scale parameter m. 

In [ 11 the authors have discussed in some detail two examples of wavelet-like bases for 
the LLL, both coming from M U :  the Haar and the Littlewood-Paley bases. They have been 
selected from all the known examples of orthonormal bases in L2@) constructed using 
wavelet theory because they are the only known examples coming from MRA for which the 
integral in (1.2) can be computed analytically. In the following, we give more information 
about the above examples and we explore the projections of the Journ6 basis and some 
cardinal splines in the LLL. 

The paper is organized as follows. In the next section, we give some useful information 
related to formula (1.2). In section 3, we return to the Haw and the Littlewood-Paley bases, 
adding some considerations to the bases already discussed in 111. In section 4, we study, in 
some detail, the Joum6 basis. We end the paper with a section devoted to cardinal splines. 

2. General considerations 

In this section, we give some information and results concerning formula (1.2) which will 
be used in the rest of the paper. 

As already seen in [l], it may be convenient to use the Fourier transform of the mother 
wavelet for computing the set (@,(x,  y)] spanning the LLL. The Littlewood-Paley basis, for 
instance, is originated by the mother wavelet 

@(P) ( r P ) - ' ( s i n ( k P )  - sin(rp))  (2.1) 
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which, when used to compute the integral in (1.2), with the identification 

h , ( ~ )  --f C J ~ ~ ( P )  2-'"/%(2-"P - n) 
makes the integration very difficult. Nevertheless, recalling that 

we can use the foliowing form for &(w) [71: 

i f n  6 101 62 i r  
otherwise 

6(0) = 

and try to exchange the order of integration in formula (1.2) using the Fubini theorem. 
This exchange was discussed in [l] for the &(U) above and claimed to be possible. We 
can generalize this result to a large class of functions &(U) from the following proposition 
whose proof is omitted due to its simplicity. 

Proposition. For any &(w) E L'(P), we have 

Remarks. 

Gaussian e-(x+p)'/z in (1.2). which ensures the fast convergence of the integral. 

can be interchanged, according to the claims made in [I]. 

(i) In the proof of the above proposition, a crucial role is played by the presence of the 

(ii) The function b(o) in (2.2) belongs to L'(R). Therefore, the order of integration 

This exchange of integrals will also be possible for the Journd and spline bases. 

We now discuss, in more detail, the link between the asymptotic behaviours of Y,&, y ) .  
Q ( P )  and &(U). The behaviour of Ymn(x ,y )  can be analysed in the same way with 
analogous conclusions. We give here mainly heuristic arguments, which, however, are 
sufficient to suggest the way in which things go. The same results can be found rigorously. 

From the first part of formula (2.3) it is evident that, if 1x1 is very large, the integral can 
be restricted to a small neighbourhood of -x  because the integrand is significantly different 
from zero only in this region. We therefore expect that, neglecting the overall phase and 
an irrelevant constant, 

lim Y m ( x , y o )  N lim @ ( - x )  
lil"m 1x1" 

where yo is fixed. 
In order to study the behaviour of *&, y )  in y ,  it is convenient to use the right-hand 

side of equation (2.3). The reason is clear: in this equation, the variable which enters in 
the Gaussian is y ,  so the same argument as before can be repeated. In particular, the main 
contribution to the integral in (2.3) comes for w N - y .  if IyI is very large. Therefore, again 
forgetting irrelevant constants and phases, we find 
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Figure 1. [ .Y, , (x ,y) [  with ( U )  m = 6.3.0 and r . y  E [-ZW.ZOO]; (b) m = -3,-6 and 
x, y E [-2M). 2001. 

where xg is fixed. 
In conclusion, we deduce that, if @ ( x )  has compact support (so that &(U) is delocalized), 

the decay of W , ( x ,  y) is very fast in x but rather slow in y. The opposite situation is 
expected if b(o) has compact support. 

The rigorous statement, which was communicated to the author by Dr G Morchio, is 
as follows. If 01 is any real number such that limlpl+m P"Q(P)  < 00 then it also follows 
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Figure 1. (Continued) 

that limlxl+m x ' ~ ~ ( x ,  yo) c: CO. 

An analogous statement holds for the decay of 'P,m(x, y) in y .  

3. The Haar and Littlewood-Paley bases 

In [I] Antoine and the author have found the explicit form of the projections of the Haar 
and Littlewood-Paley bases in the LLL, obtained using formula (2.3). 

The Haar basis is constructed by starting with the function 

whose Fourier transform = l/&J_",h(x)e-ioxdx is @(a) = (1 - 
e-i"'~z)z/iw&. As expected, we see that LW)(w) decays like l /w.  

In [l] it is proved that the projections in the LLL of the Haar orthonormal functions 
h,,(x) = 2-m/Zh(2-mx - n) are 
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IJ)  Fisure 3. IYmD (x. y)I with (a) m = 6,3,0 and .z. y E [-ZOO. 2001. (6)  m = -3, -6 and 
x , y  E [-2a0,200]. 
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Figure 3. (Continued) 

Here, the probability function 4(x) is defined by the integral 

@ ( x )  - /'e"'dt 
f i 0  

(see 181). 
In [ l ]  we have plotted the modulus of H d x ,  y)  and the asymptotic behaviour in x and 

y has been discussed: as we expect from the general discussion of the previous section. we 
have seen that the decay in x is very fast, actually exponential, while y ) l  behaves 
like l / y  in y .  This is obviously linked to the fact that h ( x )  has compact support while 
i(H'(w) decays like l/w. 

Figure 1 shows an analogous behaviour even for m # 0. Here, and in the following, 
we always fix n = 0 since the value of n does not affect the supports of the wavefunction. 

Recalling the definition of the set {hmn(x)], we see that, for increasing m (m = 
1.2.3, . . .), the support of h,,(x) increases as well so that the decay in x of the 
related function in the LLL is expected to be slower. On the other hand, if m decreases 
(m = -1. -2, -3,. . .), then the support of h,,(x) shrinks and, therefore, Hmn(x, y )  goes 
to zero faster in x. Even if we do not expect a direct influence of the value of m on 
the asymptotic behaviour of H,,(x, y) in y. due to the reasons discussed in the previous 
section, a minor influence is nevertheless unavoidable. This follows essentially from the 
normalization requirement of the wavefunctions. In fact, if the maxima of the different 
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Figure 4. 16(0)1 for (a) the linear splines. ( b )  the quadIatic splines, (c )  the cubic splines, ( d )  
the quartic splines. 

H,,(x, y) do not differ too much then a better localization in x necessarily implies a bigger 
delocalization in y. This feature is well displayed in figure 1. Here we see that the more 
the wavefunctions are localized in x .  the less localized they appear to be in y .  The same 
feature will also be observed in the plots of the other functions. 

The Littlewood-Paley basis is, in a certain sense, complementary to the Haar basis. This 
is related to the fact that it is generated by a mother wavelet which has compact support 
in the Fourier variable and decays linearly in the configuration space (see (2.1) and (2.2)). 
Using formula (2.3) [I] we find 

wl ;e asymptotic behaviour, for m and n both zero, has been analysed in [l] and is exactly 
the opposite of the one obtained for the Haar basis. In general, we can say that the different 
YL\')(x, y) decay exponentially in y and behave like l / x  in x .  

In figures 2(a), (b) and 3(a), (b), we plot the modulus of Qiip)(x, y) for n = 0 and 
m = -6, -3,0,3,6 for two different ranges of x and y .  We see that the delocalization 
in y increases when m decreases. Apparently, this is in contrast to the remarks we made 
previously for the Haw basis: in fact, since m now controls the support of I;(@), it is 
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possible to repeat analogous steps as before and show that this behaviour can be expected 
U priori. This feature is well displayed by the plots in figures 2(u), (b) for m = 3 , 0 ,  -3,  
while for m = -6, the delocalization is so strong that the function lV%)(x, y)I cannot 
 even be plotted in the figures. This follows from the fact that IVy,)(x, y)I is almost zero 
in the domain considered. As discussed before, the behaviour of QAy) (x ,  y) in x ,  when 
m varies, is expected to be essentially specular to the behaviour in y in order to keep the 
normalization of the wavefunctions untouched. 

4. The .Tourn6 basis 

The Journ6 basis is an example of an orthonormal basis of wavelets of L2(R) which is not 
constructed using MRA [71. 

It is generated by a mother wavelet, very similar to the one in (2.2). 

which, as we see, has compact support in the Fourier variable and is therefore delocalized in 
the configuration space. Since &(w) is in L1(R), we can use formula (2.3) to compute the 
wavefunction in the LLL. The computation is very similar to the one for the Littlewood-Paley 
basis and gives the following result: 

J2 

We see that, apart from a complication arising from the different support of the mother 
wavelet, the above expression is very similar to the one in (3.3). 

As far as the 
asymptotic behaviour of the above set is concemed, all the considerations discussed about the 
Littlewood-Paley basis can be repeated the speed of decay in x is essentially unchanged 
by the value of m but for the usual normalization considerations. m, however, directly 
affects the behaviour in y .  In particular, we see, from figure 3(b), the same feature already 
observed for the Littlewood-Paley basis. We observe that Y!&(x, y) is zero for x ,  y not 
too large, while it begins to be different from zero in larger regions (this follows from the 
increasing delocalization in y when m decreases). We expect that an analogous effect also 
takes place for W i z ) ( x ,  y) even if, in this case, the range we have considered in figures 
2(b) and (d )  is still not sufficient to display this delocalization. 

The modulus of q i i ( x , y )  is displayed in figures 3(u) and (6). 
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Figure 5. lW:A(x,y)l with ( U )  m = 6 . 3 . 0  and x.y E [-2W.200]; (b)  m = -3 , -6  and 
x ,  y E I-200,2001. 

5. The spline basis and final remarks 

In this section, we discuss the projection in the U L  of some orthonormal spline bases of 
L2(W). We discuss, in particular, the linear, quadratic, cubic and quartic splines. The 



Orthonormal bases for the lowest Landau level 5595 

1 
O..[ 

Y 

Y 

Figure S. (Continued) 

extension of the results to other splines is straightforward. 
The essential ingredient for computing the basis is the mother wavelet which originates 

the orthonormal basis of the LLL via equation (2.3). In [7] it is explained in detail how to 
build up these functions. The computations are a little tedious and became more difficult as 
the order of the splines ( N  = 1 for linear splines. N = 2 for quadratic splines, and so on) 
increases. We therefore omit the details and list the mother wavelets in the Fourier variable 
for N = 1,2, 3,4: 

16 - ~ ~ c o s ( w / ~ )  +cos(w/2)* 
X (5.2) (16 + 13cos(w/2) +cos(0/2)~)(16 + 13cos(w) + cos(w)*) 
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1208 - I191 COS(W/~) T ~ ~ O C O S ( O )  - Cos(30/2) 
1208 + 1191 COS(W/~) T ~ ~ O C O S ( W )  T COS(3W/2) 

I 1 / 1208 + 1191 COS(O) +~12Ocos(20) + cos(3o) (5.3) 

78095 - 88234~0~(0/2)  + 14608~0~(0 )  - 502~0~(30/2)   COS(^) 
X 

78 095 + 88 234 cos(o/2) + 14 608 cos(o) + 502cos(30/2) + cos(20) 

1 
78095 + 88234cos(o) + 14608cos(;?O) + 502cos(30) + cos(40)' 

X 

(5.4) 
The moduli of the above functions are plotted in figures 4(a)-(d). It is interesting to 

observe that the different functions look very similar to each other and therefore we do not 
expect big differences in their projection in the U. This is, in fact, what we have observed. 
For this reason we have included in this paper only the figures for the function Yti(x, y). 

We start noticing that all the functions h(N)(o) belong to L ' m )  due to their behaviour 
for large o and, therefore, the equality in formula (2.3) holds true. However, the integration 
is very hard to perform and no analytic result can be obtained. Nevertheless, it is possible 
to plot the moduli of the functions using their integral definition directly and this is what 
we have done to obtain figures 5(a) and (b). From these figures, it is possible to deduce a 
lot of information. 

We first observe that @ ( x ,  y )  appears to be the most localized function in both 
variables. However, on the contrary, the most delocalized is the function with m = -6. 
A strong delocalization, expecially in x ,  is also evident for Wlf$(x, y ) .  It is interesting to 
note that both Wlf&(x, y) and Y!&(x, y )  have an 'unpleasant' behaviour in x and y. They 
appear to oscillate very much and, from the plots, it is not at all clear how they behave 
at infinity. Why is this so? It is well known [7] that the spline mother wavelets h")(x) 
(N = 1,2 ,3 , .  , .) have compact supports in space but each set [hk:)(x), m ,  n E Z} is made 
by non-mutually orthogonal functions. In order to obtain orthogonality of the hk:)(x) we 
have to modify the native mother wavelets, losing in this way the original compactness of 
the supports and obtaining the functions above. Therefore, both the mother wavelet and its 
Fourier transform have non-compact support: there is no a priori reason for having well 
localized functions in the LLL starting from orthogonal splines. 

We end these considerations with a brief comparison between the spline wavefunctions 
and the other previously introduced functions. 

First of all, we notice that the spline wavefunctions seem to be more localized in x 
than the JournC and the Littlewood-Paley bases for positive m. Due to the oscillations 
discussed above, the opposite situation holds for negative m. Moreover, they also appear to 
be less localized in x with respect to the Haar basis. This is expected from the discussion of 
section 2 since this basis is generated by an x-compactly supported mother wavelet. Similar 
conclusions could be stated for the behaviour of all these functions in y. 
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In a future paper we will try to compute the matrix elements of the Coulomb potential 
in the bases discussed in this paper. Of course, in contrast with what has been done in 
[2],  we will not be able to compute these matrix elements analytically. Nevertheless, it 
is reasonable to expect that results can be obtained using numerical techniques and these 
results will be enough to obtain conclusions about the effective utility of MRA and wavelet 
theory in the search for the true ground state of the FQHE. 

This kind of computation has already been performed by the author [9] for a simpler 
model with many similarities with the FQHE. 

In particular, in [9] it is shown that the use of wavelets slightly lowers the trial ground- 
state energy so that the possibility, discussed in the introduction, of using MRA and wavelets 
for matching experiments and theory is really at hand. 
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